Flood Insurance—Past, Present and Future

Linda Brobeck, FCAS, MAAA, CSPA
Greg Frankowiak, FCAS, MAAA, CPCU, CSPA, MSM
Megan Hart, Ph.D.
About Our Presenters

Linda Brobeck, FCAS, MAAA, CSPA
• Pinnacle
• Director and Consulting Actuary
• San Francisco

Greg Frankowiak, FCAS, MAAA, CPCU, CSPA, MSM
• Pinnacle
• Senior Consulting Actuary
• Bloomington, Ill.

Megan Hart, Ph.D.
• AON
• Managing Director
• Southfield, Mich.
Outline of Presentation

• Current landscape of flood insurance
 – National Flood Insurance Program (NFIP)
 – Private flood insurance market
• Flood catastrophe models
In the past 5 years how many states have had an economic loss from flood? (Federal Emergency Management Association – FEMA)

A 8
B 15
C 25
D 38
E 50

Polling Question #1
Did You Know?

• 99% of US counties have had a flooding event from 1996-2019
• Nine out of 10 presidentially declared disasters involve flooding
• One inch of water can cause $25,000 of damage
• Average flood claim in 2017: $91,735
 – Average flood claim in 2016: $62,247
• 25% of flood losses in designated “low to moderate risk” areas
• Over the last 15 years, more than $10 billion in losses in areas considered low to moderate risk
• All 50 states have had economic loss from flooding in past five years
Flood: Timeline

- **Early 1900s:** Major flood events
- **1929:** No private insurance
- **1930s:** Federal government loans/aid
- **1950:** Disaster Relief Act
- **1968:** NFIP Act
- **1973:** Amendments
- **1980s:** Rate increases
- **1983:** Write Your Own program (WYO)
- **1968:** NFIP Act
Flood: Timeline

2005: Hurricane Katrina
2008: Hurricane Ike
2012: Biggert-Waters
2012: Superstorm Sandy
2017: Hurricane Harvey
National Flood Insurance Program (NFIP)

Program formed to:

1. address lack of coverage offered in private insurance market
2. reflect limited tools to assess risk
3. address problem of adverse selection
NFIP: Policies in Force by Calendar Year

Source: fema.gov
Top 10 NFIP Events in Past 40 Years

<table>
<thead>
<tr>
<th>Storm Name</th>
<th>Amount (Billions)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hurricane Katrina</td>
<td>$16.3</td>
<td>2005</td>
</tr>
<tr>
<td>2. Hurricane Harvey</td>
<td>$8.9</td>
<td>2017</td>
</tr>
<tr>
<td>3. Superstorm Sandy</td>
<td>$8.8</td>
<td>2012</td>
</tr>
<tr>
<td>4. Hurricane Ike</td>
<td>$2.7</td>
<td>2008</td>
</tr>
<tr>
<td>5. Louisiana 2016 storms</td>
<td>$2.5</td>
<td>2016</td>
</tr>
<tr>
<td>6. Hurricane Ivan</td>
<td>$1.6</td>
<td>2004</td>
</tr>
<tr>
<td>7. Hurricane Irene</td>
<td>$1.4</td>
<td>2011</td>
</tr>
<tr>
<td>8. Topical Storm Allison</td>
<td>$1.1</td>
<td>2001</td>
</tr>
<tr>
<td>9. Hurricane Irma</td>
<td>$1.1</td>
<td>2017</td>
</tr>
<tr>
<td>10. Hurricane Matthew</td>
<td>$0.7</td>
<td>2016</td>
</tr>
</tbody>
</table>
NFIP Evolution

- Major CATs
- Major Deficits
- Significant Borrowing
- NFIP Reform
NFIP: Risk Rating 2.0

• FEMA announced in March 2019
 – Modernize how risks assessed and insurance rates set
 – Provide a more accurate picture of perils facing individual properties
 – Easier to understand rating characteristics
• Likely lead to higher flood insurance rates for some homeowners and lower rates for others
• Planned to be implemented on October 1, 2021
Private Insurance Drivers

- Increased reinsurance capacity
- Likely increase willingness of private insurers to underwrite coverage
Flood Facts—Private Insurance Market Share

Based on 2019 WP—Top US Private Flood Insurers (Comm. + Res.)

- Assurant Inc.: 16.9%
- Zurich Insurance Group: 15.7%
- Swiss Re Ltd.: 13.2%
- AIG: 10.2%
- AXA: 7.0%
- Arch Capital Group Ltd.: 6.8%
- Liberty Mutual: 4.5%
- Berkshire Hathaway Inc.: 4.4%
- Alleghany Corp.: 3.9%
- Allianz: 3.9%
- Other: 13.3%
Flood Insurance Facts

According to Insurance Information Institute (III):

• 15% of American homeowners had a flood insurance policy in 2018

• Possible reasons for low take-up rate:
 – Too expensive
 – Homeowners not aware they don’t have coverage
 – Underestimation of risk of flooding

• Opportunity for growth in the US!
Considerations/Benefits/Uncertainties

- Data
- Models
- Rates
- Coverage
- Capital

- Choice
- Innovation
- Increased Revenue
- Profit Potential

- Price Restrictions?
- Underwriting Restrictions?
- Adverse Selection
- Catastrophic Loss
Quantification of Flood Risk Using Catastrophe Models
Even though flood occurrences may be frequent and losses significant, there is still a lack of detailed and comprehensive historical loss data that can be used to project future losses.

- Catastrophe occurrences are rare and/or data is limited
- Population growth and infrastructure development (building code requirements) alter the risk landscape
- Catastrophe occurrences cause large loss over a wide area; models are a tool to manage accumulation of risk
- Catastrophe models provide a means to understand plausible scenarios that have not occurred in recent history
Catastrophe models provide a holistic view of portfolio cat risk at various risk tolerance thresholds, while accounting for thousands of plausible scenarios that haven’t been observed in the historical record.

Average Annual Loss
Measure of overall catastrophe risk, function of both severity and frequency of losses
On average, you can expect to incur $48M of catastrophe loss in a given year

Probable Maximum Loss (PML) or Return Period Loss
An estimate of the likelihood that a catastrophic loss will be met or exceeded
The 100 yr return period is $548M – There is a 1% probability of having a loss of $548M or greater

Occurrence Exceedance Probability (OEP)
Probability that the single largest event loss in a year will exceed a loss threshold

Aggregate Exceedance Probability (AEP)
Probability that the aggregate event losses in a year will exceed a loss threshold

Volatility
Mean losses will fluctuate from year to year
Volatility measures the amount of fluctuation

Measurement: $CV = \frac{\text{Standard Deviation}}{\text{Average Annual Loss}}$
Sources of Flood

Fluvial (Riverine) Flooding
- Heavy rainfall or snow melt that causes water levels in rivers or creeks to overtop the banks

Storm Surge
- Rising coastal flood water due to a hurricane

Pluvial (Flash) Flooding
- Heavy downpour of rain that saturates the urban drainage system and excess water cannot be absorbed

Hurricane-Induced Precipitation Flooding
- Flooding from rainfall associated with a tropical storm or hurricane
How Do We Know If a Flood Model is Good?

All components of a catastrophe model from hazard and vulnerability to losses can be evaluated to identify model strengths and concerns, with the ultimate goal of helping clients choose a best-fit solution based on their portfolio and risk management goals.

Hazard
- Are event frequency/severity relationships reasonable?
- Are current scientific methods used to create event footprints?

Vulnerability
- Are relationships between risk characteristics and vulnerability regions reasonable?
- How are relationships between hazard and damage derived? Are they defendable?

Losses
- Is loss distributed appropriately across geographic regions?
- How do different types of events contribute to loss along the EP curve?
- Where are key historical event losses positioned on the EP curve?
Hazard: Methodology

Hurricane Tracks
- Stochastic events from the hurricane models

Hazard Model
- Changes in hazard parameters along the length of the track
- Bathymetry

Hydrology
- Precipitation data is used to create stochastic events
- Rainfall runoff is determined considering factors such as soil, elevation, and land use

Hydraulics
- Rainfall runoff is routed through drainage basins and into the river network; Converted to a flood depth

Flood Depth
- Surge / Flood depth stored in hazard grid
- Compared with ground elevation grid
- Building elevation also considered

Damage
- Differentiation in vulnerability varies by model
- Key characteristics include story height, year built, construction and foundation type
Evaluating Storm Surge Hazard Approaches

Evaluation of storm surge hazard involves a two-fold approach of evaluating the driving hurricane wind model in addition to evaluating the storm surge model itself.

Evaluating a Hurricane Model

- **How Often?** Regional landfall rates by category compared to historical
- **How Strong?** Central pressure and one-minute sustained wind speed (Vmax)
- **How Wide?** Radius of maximum winds (Rmax)
- **How Fast?** Forward speed

Different Storm Surge Model Types

- **Parametric Model**
 - Height of water on land is modeled analytically given a few key inputs such as distance to coast, elevation, land cover, height of water at the coast, etc.

- **Simplified Numerical Model: SLOSH**
 - SLOSH is developed by the National Weather Service (NWS) and utilizes regional meshes to force coastal flooding on land
 - Simplified versions of shallow water equations used

- **Fully Hydrodynamic Models: MIKE 21 & ADCIRC**
 - 2D hydrodynamic models that use unstructured triangular regional meshes
 - Uses shallow water equations to simulate hydrodynamics
 - Uses high-resolution topography, bathymetry, and land use data
Evaluating Inland Flood Hazard Approaches

Hydrologic Cycle

Event generation (both on-plain and off-plain)?
- GCM vs. Gauge Data
- Event definition
- Consideration of snowmelt

Data sources and vintage; Resolution

Surface runoff – How are discharges determined along the river network? How are off-plain flood footprints determined?

Flood Routing & Hydraulic Modeling

Flood routing approach employed

Distances between cross sections for determining discharge along river network

Resolution of DTM used in hydraulic model for estimating flood depths
Flood Depth & Damage

Source and Approach:
- Component-based vs. Observation
- Army Corps of Engineers
- Institute of Water Resources
- Claims Data

Resolution of hazard grid and resolution of ground elevation
Validation of depths for historical events

Primary risk characteristics supported
- Availability of key construction and occupancy classes

Supported secondary modifiers
Key Vulnerability Inputs for Flood

- Do the loss cost relativities make sense?
- What are the assumptions for unknown?
- Is there the ability to input user-defined first floor height?

- What options are available?
- What is the impact of going from unknown to known?

- Is this input supported in the flood model?
- Are the impact by coverage as expected?

- Are the required construction classes available?
- Do the loss cost relativities make sense?

- How implemented in the model?
- Is the impact as expected?

- Are the required occupancy classes available?
- Do the loss cost relativities make sense?
Investigation of Losses

EP Loss Comparisons
- OEP vs AEP
- EP losses by Flood Zone
- Where do key historical events sit on the curve?
- Comparison to claims data where available

Geographic Distribution of Losses
- AAL By County
 - Geographic distribution of loss
- AAL by Location
 - Elevation
 - Flood Zone
 - Proximity to Water
- Loss Cost By County
 - Does distribution make sense?
 - Flash flooding vs. Riverine
- Excess AAL
 - Where are the most severe events occurring?
 - Historical events? Claims Data?
Investigation of Losses

EP Loss Comparisons

- Model A
- Model B
- Model C

Geographic Distribution of Losses

- AAL By County
- Loss Cost By County

Frequency vs. Severity Relationships

- Model A
- California Flood X Zone
- Model B
- California Flood X Zone

EP Loss Comparisons Table

<table>
<thead>
<tr>
<th>Return Period</th>
<th>Model A</th>
<th>Return Period</th>
<th>Model B</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-yr</td>
<td>1,865M</td>
<td>500-yr</td>
<td>11,181M</td>
</tr>
<tr>
<td>100-yr</td>
<td>1,269M</td>
<td>100-yr</td>
<td>3,151M</td>
</tr>
<tr>
<td>10-yr</td>
<td>419M</td>
<td>10-yr</td>
<td>255M</td>
</tr>
</tbody>
</table>

- AAL is **less than 2%** different between the two models
- 100-year return period is **148% higher** in Model B than in Model A
What else should we be thinking about?
Additional Model Considerations

Geocoding Approach
- Street segment vs. Parcel Based vs. Rooftop Geocoding

Treatment of Flood Prevention Structures
- Source and vintage of levees implemented
- How are levee failures considered?
- How are dams as a flood reduction measure considered in event generation / footprint development?

Non-Modeled Risk
- Regions / Perils with No Available Model
- Classes and LOBs not covered by models
- Secondary Perils and Effects Not Covered
- Coverages not considered by models

http://cmisheetpiling.com/
Availability of Additional Flood Capabilities

Return Period Floodplain Scenarios
- Return periods available
- Flood depths associated with different return periods

Historical Event Scenarios
- How many and what events are available?
- Geographic spread

Real-Time Event Modeling
- Availability of aggregation footprints during / quickly after event
- Resolution of footprints

Underwriting Tools
- Flood Zone
- Ground Elevation / BFE
- Distance to Flood Plain
- AAL Grids
- Flood Score

Louisiana Flood Shape (August 2016) shown in IoD
Important Hurricane Trends

Precipitation
Rainfall rates expected to increase in the future with a warmer atmosphere, which is able to hold more moisture.

Forward Speed
Hurricanes may be moving slower, resulting in a longer duration of strong winds and precipitation at a particular location and increased probability of storm surge overlapping with a high tide.

Sea Level Rise
Rising sea levels dramatically increase the potential for damaging floods from storm surge; Sea level rise along the coastal Northeast expected to exceed the global average rise.
Flood is a key growth opportunity (often no. 1 for many reinsurers) and technology and analytics are the key to education, expansion, and profitability!

- **Flood Models**
 - More and better flood models entering the market
 - Multi-model vendor insights

- **Spatial Analytics**
 - Manage aggregations
 - Compare risks to FEMA’s digital flood maps or floodplains available from other vendors
 - Event footprints

- **Flood Strategy**
 - A and V zone vs. X zone
 - Improve coverage over NFIP or at a reduced price?
 - Personal vs. commercial lines
 - Sub-limits
 - Set premium (no touch) or strategic underwriting

- **Implementation**
 - How to educate policyholders, agents, etc.?
 - Reinsurer support
 - Platform stability
Questions?
Join Us for the Next Pinnacle APEX Webinar

Thursday, September 24
2:00 p.m. ET
Registration is Open

Group Captives 101

with Pinnacle’s Joe Herbers and Marsh Management’s Dave Huber
Final Notes

• We’d like your feedback and suggestions
 • Please complete our survey

• For copies of this APEX presentation
 • Visit the Resource Knowledge Center at Pinnacleactuaries.com
Thank You

Linda Brobeck, FCAS, MAAA, CSPA
415.692.0261
lbrobeck@pinnacleactuaries.com

Greg Frankowiak, FCAS, MAAA, CSPA, CPCU, MSM
309.808.7199
gfrankowiak@pinnacleactuaries.com

Megan Hart, Ph.D.
248.936.5316
Megan.hart@aon.com